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Abstract: We consider a bulk-service queueing system with random server capacity where the server is
subject to random breakdowns. Start and end of idle periods are regulated by an accumulation level r. If
the queue is larger than or equal to r when a service ends. the server takes a group of r customers to
serve. On the other hand, if the queue is smaller than » when a service ends. the server remains idle and
waits for the queue to reach r, then takes a group of at mostr customers to serve. We derive the
probability generating function of the state probabilities in the steady-state at a service completion
instant and at an arbitrary instant of time. We also derive various performance measures. A detailed
numerical example is provided.
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1. Introduction

Queueing systems with unreliable server. or where the server is subject to random breakdowns,
have been heavily considered by researchers in the last few years. A large amount of models are
available and more and more models are being studied. It is not uncommon to see scholars derive an
optimal management policy for such systems. For example, Wang [16] considers the M/G/1 queue with
second optional service and server breakdowns. Wang et al. consider the optimal control of the M/G/1
queueing system with server breakdowns and general startup times under N-policy [18] and under T-
policy [17]. Ke et al. [10] deal with the optimal (d, ¢) vacation policy for a finite buffer M/M/c queue
with unreliable servers and repairs. Another recent paper is that of Paz and Yechiali [13] who study an
M/M/1 queue in random environment with disasters, assuming disasters are more general notion than
server breakdown. Instead of reviewing all the research on this topic, we refer the reader to the recent
survey of Krishnamoorthy et al. [11].

We also consider in this paper a queueing system with an unreliable server. It is a bulk service
system and the server does not start service until the number of customers in the queue accumulates to a
fixed level. Such systems were called quorum systems by Chaudhry and Templeton [3]. They were also
called queues with fixed accumulation level (Dshalalow and Tadj [7]). service delaved queueing
systems (Abolnikov and Dshalalow [1]), systems under g-policy (Dshalalow [6]). etc. For extensive
discussions of such systems and their analysis see for example, Medhi [12] and Dshalalow [6].

Another characteristic of the queueing system under consideration is that the capacity of the server
becomes random following an idle period. These systems were introduced and studied by Dshalalow
and Tadj [7-9] who also provide some practical applications.

We further assume that breakdowns, services, and repairs depend on the number of customers
being served. Breakdowns occur according to a Poisson process, but service times and repair times
follow general probability distributions. Most papers available in the literature use the supplementary
variable technique to analyze their model. Following a description of the model in Section 2. we
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combine in Section 3 the embedded Markov chain with semi-regenerative techniques to obtain the
probability generating function (PGF) of the system state probabilities in the steady-state. We also
derive performance measures in Section 4. present a detailed numerical example in Section 3, and
conclude the paper in Section 6.

2. Model Description

We consider a single-server queueing system with an infinite waiting room. The arrival process 1s
a Poisson process with positive rate A. The service is in bulk and the process is controlled through a
threshold r as follows: When the queue size is larger than or equal to r. service is provided to a group
of exact r customers. When the queue size is smaller than r, service is provided to a group of size at
most r customers.

More formally, let Q(¢) denote the number of customers in the system at any time ¢, T, represent
the completion time of the nth service, and Q,, = Q(T,]) the number of customers in the system at the
nth service completion instant.

When @, = r. the server uses its whole capacity and starts serving a group of r customers, all at
once. The service times are i.i.d random variables with a general probability distribution B(t), and the
average service time b and the second moment b® are finite. While the server is up and working, it
is subject to breakdowns according to a Poisson process with rate @ > 0. When the server breaks down
the service must stop until the repair is completed and the service time of this group of customers is still
valid, it is repaired immediately to return to the new state and operate. The repair time follows a general
distribution function R(t), and the average repair time r and the second moment r® are finite. Now,
we introduce the modified service. which is the time required to process a batch of customers including
any breakdowns and repairs. The modified service time has distribution function G (t). and the average
modified service time and the second moment are denoted by g and g®. It is clear that both g™
and g are finite. Indeed. the Laplace-Sticljjes Transform (LST) G*(8) of the modified service. the
LST B*(8) of the actual service time, and the LST R™(8) of the repair time are related by, see Tang [14,
13].

') = B (0 +a(1-R(9)),
so that
g(l) — b(l)(l + a‘r(l)),
and
9@ = b®(1+ w(n)z + abWr@),
are finite.

In the other case, when @,, < r. the server remains idle. waiting for the queue size to reach the
threshold level . However. by the time the queue size becomes r, the server capacity may have
changed, so that only a random number of customers ¢, are served all at once. Whenj(1<j<7r)
customers are selected to receive service, the service times are i.1.d random variables with a general
probability distribution B;(¢). and the average service time bj(l) and the second moment bfz) are finite.

The random server capacity ¢, arc i.i.d random variables with probability mass function (y1,¥2, -, ¥.).
Also, while the server is up and working. it is subject to breakdowns according to a Poisson process
with rate @; > 0. When the server breaks down the service must stop until the repair is completed and
the service time of this group of customer is still valid. it is repaired immediately to return to the new
state and operate. The repair time follows a general distribution function R;(¢). and the average repair

1 (2

and the second moment v are finite. Therefore, breakdowns arc Poisson with rate a;,

dependent on the number j of customers being served. Service and repairs also depend on j. Now, we
introduce the modified service, which is the time required to process a batch of customers including any
breakdowns and repairs. The modified service time has distribution function G;(t). and the average

time ?}-
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modified service time and the second moment are denoted by g}” and 9}(12)‘ It is clear that both g}l)

and g}z) are finite. Indeed. the LST G/ (8) of the modified service, the LST B/ () of the actual service

time. and the LST R}‘ (0) of the repair time are related by

G;(e) = Gj‘ (8 +aj (I—R;(B))), j = 1;”‘;7"1
so that
g}l) — bj(l)(l +aj1}(1})’ j=1,-
and
@) _ 5@ )% (1),.(2)
9; —bj (1+ajr;- ) +cr),vbj /e
are finite.

We assume that the arrival, service, breakdowns. and repair processes are independent of each
other. We will denote by P! the conditional probability given @, =i. while E' will denote the
corresponding expectation.

3. Model Analysis

The stochastic process {Q,,,7n = 0,1, -+ } is a Markov chain since it satisfies the following recursive
formula:

Qpay = {T'_Cn+1 + Vs, Qn<rm, )
nrl Qn —r+ Vn+1y Qn =T

Recall that ¢,, represents the number of customers served in a single batch following an idle period. The
number of customer arrivals during the nth modified service time is denoted by ¥, and is such that
E[zVn+1] = G* (1 — 12).

3.1. Ergodicity

Let A = (p;;) denote the transition probability matrix (TPM) of {Q,,,n = 0,1,---}. Then the first r
rows (row 0 to row (r — 1)) are all identical. while the rest of the elements form an upper triangular
matrix. Thus, 4 is a A-matrix, see Abolnikov and Dukhovny [2], and stability of the system is insured
provided

d
EA,,(Z) <r,

z=1

where A,.(2) is the PGF of the rth row of the TPM A. It is readily seen that the above condition is
equivalent to

p <1,
where

201 + ar®)
r

3.2. PGF at a service completion epoch
Assuming now the above condition is satisfied so that the Markov chain is ergodic. let us introduce
the limiting state probabilities p; = limyo, P(Qn =1). Also, let P = (pg,ps,~) and p(z) =
=0 PiZ". )
Let Ai(z) = E[z%+ | Q,, = i]. Then obviously A;(z) = Xj~, p;;z’ is the PGF of the ith row of
the TPM A. Since {Qn,n = 0,1,--} is ergodic, then P(2) = limye, Ei[z%+1], where E{[z%n+1] =
E'E[z9%]Qu]] = E'[Ag,(2)] = Zi20 A;(2)P'(Qy = J). Therefore
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p(z) = XiZo A;(2)p;. From (1), we have
T
Z G (A= Ay, i<,
=1
zTGT (A — A2), i=r,

Ai(2) =

and it follows that

B r'l[z’”A(z)—z'G - }{z)]pt
p(z) = G-

When i < r, A;(2) is independent of i and thus has been denoted by A(z). The probabilities pg, -, Pr-1

are obtained by solving the linear system of r equations in r unknowns,
r—=1

dk )
Z@[A(Z)—zl] = 0, k=0,,k;—1, s=1,-,S,
i=0 .
r—1 N
Z{”"‘i”(zgﬁ”h —9‘1’)}1’: - r—2g®,
=0 k=1

where & = r — E[c,] and z; are the roots of the characteristics equation,
zZl —=G"(A—2Az) =0,
in the region B(0,1)\{1} with their multiplicities ks such that ¥3_, ks = r — 1. see Chaudhry and
Templeton [3] and Chaudhry et al. [4].
3.3. PGF at an arbitrary instant of time

Assuming now the above condition is satisfied so that the semi-regenerative process {Q(t),t = 0}
is ergodic. let us introduce the limiting state probabilities m; = lim,_ . P(Q(t) =i). Also, let
w(z) = X2, m;z'. Then. using the main convergence theorem for semi-regenerative processes. we have,
see Cinlar [3],

A(1 - 2) Pr(z) = (1 — 2")p(2) — IZ(l —2GEA - ’lz)l [Z p'l
k=1

Pp is called the stationary mean service cycle and will be derived in the next section.
4. System Performance Measures
Using the PGF's of the previous section. various performance measures can be obtained.

4.1. Stationary mean service cycle

First we calculate the stationary mean value of the service cycle PS to conclude the evaluation of
the PGF 1(2). Let §; = E*[Tyyq — Tl and g = (ﬂo;ﬁp”’)r‘ Then,

r—i )
+ng Ye, L<T,

g(”, i>r

so that

1
r—1
Pp = Z(—+ 9 —9(1))13&"‘9(1)-
0
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4.2. Stationary mean server load
Note that the server capacity is given by
I _ e+ Qn < T,
n+1 —

r, Qp=
The stationary mean value of the server load € defined by
£ = lim E%[[,],

n—co

can be shown to be equivalent to

4.3. Stationary system intensity

Also known as the offered load, it is defined by

¥ =

In this queueing system. it can be evaluated by

r—1 s
= Z Ir —i+2 (Z 97 = 9‘”)] pi + g™
i=0 fe=1

Also, using the summability-to-one condition P(1) = 1. it can be shown that J = £.
4.4. Mean system size at a service completion epoch

Using the PGF p(z). we find the mean system size at a service completion epoch L; = p'(2)],21

N"(1) — D" (1)

Ly = :
d 2D'(1)

where

N"(1) = Z IZr(r -1+ Zr(e + AZ gcl)yk) +(2r + DE[c] - E[c?]

+ 22 (Z 9Py Z gLy, — 19“}) —i(i— 1)+ 22 (Z 9Py, - 9(2})1 Pi,

k=1

D' =r(r-1)—-22¢®, DM =r-29D.

4.5. Mean system size at an arbitrary instant of time

Using the PGF m(z). we find the mean system size at an arbitrary instant of time L. = 7' (2)|,-; as

Lo = f,[”(" D, Z(r R +Ag§”]l “

4.6. Mean idle period

Since the probability that the server is idle in the equilibrium is given by
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Zizo pierr—i(©)
1
}:0 p!
where e; ,._; () represents the k-Erlang probability density function with parameter A, it follows that the
mean idle period in the steady-state is given by

’

r-1, It
_&i=o PiTy

P .
i=o0 Pi

4.7. Mean busy period

The proportion of time the server is idle in the steady-state { = Y,|_ p; is given by

=1vE

Therefore, the mean busy period can be calculated from
B=1_%
7"

4.8. Mean busy cycle

Finally, the mean busy cycle, which is the sum of the mean idle period and the mean busy period.
is found to be

5. Numerical Example

Assume customers arrive to a service facility at a rate 4 = 0.6 and the server is subject to Poisson
failures with rate @ = 0.05. For illustration, assume r = 2. When the queue size is greater than or equal
to 7. the server serves a group of 2 customers according to the exponential distribution with meanb® =
2.7. Following a breakdown. the server is repaired according to an exponential distribution with mean

r® =13 Note that b® =2[p®]" = 14,58 and r@ =2[r®]" =338. We calculatc g =

2
bD(1+ar®) = 28755 and g1 = b(1+ ) +abPr® = 169933 . A steady-state
o]
exists since p = g = 0.8627 is smaller than 1.
The characteristic equation reduces to
1+ 2rM(1-2)

2 _ =
1+ 2rW(1=2) + bW = 2)[1 + ar® + 2r(D(1 - 2)]

O-

Z

or simply
—2bWrWz3 4 AW + bW (1 4+ ar® + 2rM)]22 —z —1-2rW = 0.
This equation has the three roots 2.4126, 1.1003, and z; = —0.5305 which is inside the open unit ball.

When the queue size is smaller r = 2. i.e., there is 0 or 1 customer waiting, the server remains idle
and waits for the queue to have 2 customers. Then he serves a group of either 1 customer with
probability y; = 0.3 or 2 customers with probability y, =1 —1y,, according to the exponential

&8}
2

C . . p1) . .
distribution with respective means bg D = p® and bV = - In each case, following breakdowns with

. [1s . . . + + . + .
respective rates ¢, = a and a, = 5 the server is repaired according to an exponential distribution with

(&) 2 2
respective means rl(l) =rW and rz(l) = % Note that b1(2) = Z[bfl)] = 14.58,&1%2) = Z[bgl)] =
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2 2
364517 = 2[P] =338 and ¥ = 2[r{"] = 0.845. We calculate g{" = b (1 + ayr?) =

2
28755, = bf”(l + alrf”) +a,bPr® = 169933 . and g'V = b§”(1 + V) = 1.3719 .

2
9 = b (1 + ayr{®) + ayb e = 3.7929.
To obtain py and p;. we solve the linear system of two equations in two unknowns
[A(z1) — 1]py + [A(z1) — z1]ps = 0.
[e+2+2(22-1 982 — 9©)] po + [ + 1+ A(Ther 970 = 9D) |21 = 2= 2.

Here A(2) = zG;(A — A2)y; + G (A — A2)y,. E[C] =y; + 2y, = 1.7 and e = r — E[¢c,] = 0.3. We
obtain py = 0.1202 and p; = 0.1108. We also obtain my, = 0.0623 and r; = 0.1193 and calculate all
the performance measures: P = 3.2178.3 = £ = 1.9307. Ly, = 39.4241. L. = 41.2955, [ = 2.5340,
B =11.3929, and C = 13.9269.

If breakdowns happen too often, we would expect the number of customers in the system to grow
higher and higher. This is indeed the case. as we increased the breakdown rate a from 0.01 to 0.10 by
increments of 0.01 and recorded the mean system size at a service completion epoch and at an arbitrary
epoch. The variations of these two measures are represented in Figure 1.
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Figure 1. Effect of the breakdown rate ¢ on the mean system sizes Ly and L,..

6. Conclusion

We have considered in this paper a bulk service queucing svstem where the server capacity
becomes random following an idle period. Customers arrivals and server breakdowns occur according to
Poisson processes. but all other processes follow general distributions. A kind of state dependence is
assumed as the breakdown. service, and repair processes all depend on the number of customers being
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served simultancously. The PGF of the system size in the steady-state is obtained. Since all the main
performance measures are obtained, it is possible to design an optimal management policy for this
system where the threshold level » would be the control variable.

Acknowledgment

The author would like to thank the reviewers for carefully reading the manuscript and making
suggestions to improve its content.

References

[1] Abolnikov. L., & Dshalalow, J. H. (1992). A first passage problem and its applications to the
analysis of a class of stochastic models. Journal of Applied Mathematics and Stochastic Analysis,
5(1). 83-97.

[2] Abolnikov. L.. & Dukhovny. A. (1991). Markov chains with transition delta matrix: Ergodicity
conditions, invariant probability measures and applications. Journal of Applied Mathematics and
Stochastic Analysis, 4(4), 333-356.

[3] Chaudhry, M. L., & Templeton, J. G. C. (1983). A First Course in Bulk Queues, John Wiley, New
York. New York.

[4] Chaudhry, M. L.. Madill, B. R., & Bricre, G. (1987). Computational analysis of steady-state
probabilities of M/G*%1 and related queues. Queneing Systems. 2(2). 93-114.

[5] Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall. Englewood Cliffs, New
Jersey.

[6] Dshalalow. J. H. (1997). Queueing systems with state dependent parameters .In: J.H. Dshalalow
(ed.) Frontiers in Queueing: Models and Applications in Science and Engineering. 61-116. CRC
Press, Boca Raton, Florida.

[7] Dshalalow. J. H. & Tadj, L. (1992). A queuecing system with a fixed accumulation level, random
server capacity. and capacity dependent service time. Infernational Journal of Mathematics and
Mathematical Sciences, 15(1). 189-194.

[8] Dshalalow. J. H. & Tadj. L. (1993a). A queucing system with random server capacity. Queueing
Svstems, 14(3-4), 369-384,

[9] Dshalalow, J. H. & Tadj, L. (1993b). On applications of first excess random processes to queueing
systems with random server capacity and capacity dependent service time. Stochastics and
Stochastic Reports, 45(1-2). 45-60,

[10] Ke., J.-C. Lin, C. H.. Yang, J.-Y.. & Zhang. Z. G. (2009). Optimal (d, ¢) vacation policy for a finite
buffer M/M/c queue with unreliable servers and repairs. Applied Mathematical Modelling, 33(10),
3949-3962.

[11] Krishnamoorthy, A., Pramod. P. K.. & Chakravarthy. S. R. (2014). Queues with interruptions: a
survey. TOP, 22(1), 290-320.

[12] Medhi, J. (1984). Recent Developments in Bulk Queucing Models, Wiley Easter Ltd.: New Delhi.

[13] Paz, N. & Yechiali, U. (2014). An M/M/1 queue in random environment with disasters. Asia
Pacific Jouwrnal of  Operational Research, 31(3). [12 pages] DOI:
http://dx.doi.org/10.1142/S021759591450016X

[14] Tang. Y. (1995). Some reliability problems arising in GI/GI/1 queueing system with repairable
service station. Microelectronics Reliability, 35(4). 707-712.




Queueing Models and Service Management

[15] Tang, Y. (1997). A single-server M/G/l queueing system subject to breakdowns -- Some reliability
and queueing problems. Microelectronics Reliability, 37(2), 315-321.

[16] Wang. J. (2004). An M/G/1 queue with second optional service and server breakdowns.
Computers and Mathematics with Applications, 47(10-11), 1713-1723,

[17] Wang. T.-Y.. Wang., K.-H., & Pearn. W. L. (2009). Optimization of the T-policy M/G/1 queue
with server breakdowns and general startup times. Journal of Computational and Applied
Mathematics. 228(1). 270-278.

[18] Wang, K.-H., Wang, T.-Y., & Pearn. W. L. (2007). Optimal control of the N-policy M/G/1
queueing system with server breakdowns and general startup times. Applied Mathematical
Modelling, 31(10), 2199-2212.







