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Abstract: We investigate a maintenance system represented as a single-server polling model. Within the
model, we assume two classifications for the type of failure a machine may experience. There are C
total machines in the system, which at any point in time are either working, in service, or waiting to be
served in one of two queues. Working machines are subject to independent and identically distributed
exponential failure rates. Machines are returned to working condition after eventually receiving service
according to the class of their failure. Service and switch-in time distributions for each class are
assumed to be phase-type. Multiple service policies are examined, including preemptive resume priority,
non-preemptive priority. and exhaustive service. We model the system as a level-dependent
quasi-birth-and-death process, and use matrix analytic techniques to compute the steady-state joint
queue length distribution as well as the sojourn time distribution of a broken machine. We present
several numerical examples which highlight the dependency of the expected number of working
machines on factors such as the service policy and the probability of a non-zero switch-in time.

Keywords: Exhaustive service. maintenance model, phase-type distribution, polling model. priority
service, quasi-birth-and-death process. switch-in times.

1. Introduction

A classic single-server polling model typically involves multiple queues of customers of one or
more classifications (in terms of arrival rates and service time distributions), which are attended to by a
lone server whose behavior in terms of determining which queue to visit. and for how long, is defined
by a set service policy. When one considers modeling maintenance systems, polling model service
policies may not be the first thing to come to mind. However, in the area of maintenance optimization,
deciding what components or systems to repair, and when to repair them, are common queries. In fact,
two of the first papers to model systems that we now identify as polling models were regarded as
maintenance problems! Mack et al. [19] investigated the efficiency of a closed system of machines.
which were serviced by a patrolling repairman who would visit each machine in a cyclic fashion. Mack
[18] would go on to revisit and generalize this model. extending the constant repair times to discrete
random variables.

Within this work, we aim to once again examine how to analyze a maintenance system through the
use of a polling model framework. Specifically. we recognize that the closed nature of these systems
(i.e.. having a finite population of machines) permits a natural application of matrix analytic methods
when treating the systems as level-dependent quasi-birth-and-death (QBD) models. In designing our
particular model. we envision a production facility wherein every (identical) functioning machine is at
risk of failure as long as it is working, and upon failure it is possible to immediately diagnose the
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classification of failure and group it with other machines requiring a similar amount or type of work to
repair. For example. a server farm containing an inventory of identical computers which are able to
immediately produce an error report after failing. We could divide these computers into groups that
require little work to return to functionality, such as simply resetting the system or removing
accumulated dust. or those that require more significant work. such as repairing or replacing hardware.
Within such a system. the goal of a business is to maximize the number of functioning machines. and so
knowing the optimal order to repair different classifications of failure is of great importance. We
describe this ordering in terms of a polling model’s service policy. For more information on the study of
polling models. we direct the interested reader to the works of Takagi [27]. Levy and Sidi [15].
Vishnevskii and Semenova [28]., Boon [3] and Boon et al. [4], as well as the references therein.

When we refer to a model as a maintenance system. it is immediately clear that repairs and/or
replacements will be involved. There are. however, very distinct types of models that can claim this
label. This depends on what, exactly, is being maintained over time. For instance, a model may concern
itself with the condition of a central machine, rather than being directly connected to a queueing-related
issue. For example, Alfa and Castro [2] found the steady-state probabilities for a discrete-time model of
a single machine system that would fail after its natural lifespan, or have a chance to fail after each time
increment, at which point it would be repaired or replaced. This work was similar to that of Neuts et al.
[22]. who considered a comparable continuous-time model where the failures occurred according to a
Poisson process. Pérez-Ocon and Montoro-Cazorla [23] would later expand on the continuous-time
model by providing a way to numerically solve for the transition probability function matrices (as
functions of time) for each operation and repair state, among other contributions.

When considering maintenance in a queueing system, depending on whether the “server(s)” or the
“customers” are the ones receiving repairs, the interpretation and analysis of the model will vary greatly.
In the former. we may have a machine required to conduct service or perform some function that is at
risk of breaking down over time, leaving customers to wait in their queue (or risk abandonment due to
impatience) until the server is repaired. In the latter, the server may be a repairman who tends to a
closed system of machines or components that “arrive” to the queue by failing, where they will wait to
be repaired. This is the type of maintenance system that we analyze in this paper.

Within our customer-centric model, we apply a matrix analytic approach in our analysis. This is
also a convenient tool for server-centric maintenance models. For instance. Yang et al. [29] used matrix
methods in their investigation of a queueing system where the server would break down over time
(reducing their rate of service). according to random shocks modeled by a Poisson process. This model
was further generalized by Chakravarthy [6], who introduced a probability of a shock not affecting the
server, if the server was idle at the time, and replaced the assumption of a Poisson process customer
flow by a more flexible Markovian arrival process. This paper also utilized phase-type distributions for
several key system characteristics such as the effective service time and repair duration. Further
examples of other server-centric maintenance models which do not employ matrix analytic methods
include the works of Hsu [11]. Perry and Posner [24]. and Peschansky and Kovalenko [25].

Clearly. the patrolling repairman models of Mack et al. [19] and Mack [18] are both examples of
customer-centric maintenance models. Kim and Koenigsberg [13] also considered a customer-centric
maintenance model. applying some of the results from Mack et al. [19] to examine the server utilization
and efficiency of machines in a system consisting of a single server repairing machines on two rotating
carousel conveyors. Within customer-centric maintenance models, another feature not discussed by
these papers that can be used is to maintain an inventory of spare (or reserve) machines (e.g., see Kim
and Dshalalow [12] and Buyukkramikli et al. [5]). If it is not too costly to invest in more machines than
can be used at capacity, an inventory of spares can help maintain productivity while one or more
machines are shut down for repair.

Finally, we cite the closed queueing model of Gross et al. [9], who considered a closed system of
M + y machines, up to M of which could be turned on and working at any time (iec.. the »
machines in the maintenance float were spares). having competing exponential failure times which may
result in either a minor or major repair being required. Every failed machine would either be routed to
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the minor or major repair node, and those that receive minor repair may still be routed through the major
repair node prior to being returned to operation. Each repair node was permitted to have multiple servers
in parallel, and the optimal selection of y as well as the number of servers at each queue was
investigated. Every distribution was assumed to be exponential, so that the analysis of their system was
in the style of Gordon and Newell [8] for queueing networks with exponential servers. The reason that
we single out this paper is that the concept of a closed network of machines which suffer either minor or
major failures according to competing exponential failure rates is. in a way, analogous to our model of
interest. We divert. however, in that machines suffering minor failures are never routed through the
major failures queue before becoming operational again. and we only have a single server who
alternates between serving the two queues according to some specified service policy. Moreover, we do
not assume the existence of a maintenance float of spare machines that can be functional. but not turned
on. Madu [20] also considered a similar model to Gross et al. [9]. differing in that only one machine
could be turned on at a time, only a single server was at either repair node. and failed machines always
had to initially go through the minor repair node prior to possibly being routed to the major repair node.
Abboud [1] later developed an efficient iterative method to find the optimal number of servers and
machines for the same model as Gross et al. [9].

While all being instances of customer-centric maintenance models, it is clear that through their
connections to the analysis of Gordon and Newell [8], the models of Gross et al. [9]. Madu [20]. and
Abboud [1] are also specific variations of closed queueing networks (see also Lin et al. [16] and Righter
[26]). In fact. due to the closed nature of these maintenance systems, this connection 1s quite logical. If
we consider a machine’s time until failure as the duration of their “service™ required before leaving their
work node, then the machines may be routed between nodes (representing work or repair stations) after
receiving service like customers within a closed queueing network.

In fact. this alternative framework could also be used to describe our model of interest when we
apply a priority service policy, rather than interpreting it solely as a polling model. similar to the work
of Morris [21] who considered a closed queueing network with two classes of customers having
class-dependent priorities and service rates at each of two nodes. In this case. we would describe our
model as having two nodes. one with an infinite number of servers (i.c.. the exponentially distributed
times until failure for working machines), and the other with a single server who repairs machines
according to their priority level. which is randomly determined between two levels upon completion of
service at the first node. Of course, machines being repaired by the lone server at the second node would
have a service time distribution dependent on their priority class. and when alternating between serving
different priority classes. the server may incur a switch-in time. However, as we are also interested in
the exhaustive service discipline, we perform all of our analysis within this work in the context of a
polling model.

The remainder of the paper is organized as follows. In Section 2, we present the mathematical
details concerning our 2-class maintenance system of interest. In order to determine the steady-state
joint queue length distribution as well as the sojourn time (i.c.. waiting time plus time in service)
distribution of a broken machine, we model our system as a level-dependent quasi-birth-and-death
process and employ a matrix analytic solution procedure. The exhaustive and non-preemptive priority
service policies are considered in Section 3, whereas the preemptive resume priority service policy is
dedicated to Section 4. In Section 3, we apply our results and present a variety of numerical examples
which investigate the effect that switch-in times and service policies have on important performance
measures of interest. such as the mean sojourn time of a broken machine and the mean number of
working machines. Finally. in Section 6. we summarize our results and indicate possible directions for
future research.

2. The Maintenance Model

We introduce a maintenance system characterized as a polling model with two classes, each of
which represents a different type of failure which may require differently distributed service times to
repair by a lone mechanic. Let € be the total number of machines in the system, which are all

143




© Granville, Drekic

simultaneously subject to exponential failure rates as long as they are working. Define ;. i=1.2. to
be the rate for class-i failures, so that each machine has a total failure rate of c¢=¢a; + . Once a

machine has failed (or arrived to class i). it waits in the i" queue to be served on a
first-come-first-served basis amongst other machines in that same queue. It is assumed that only one
tvpe of failure can happen to a machine at one time, and that the times until failure of each of the
machines are independent. While not represented as being in a queue directly, we denote working
machines as being of class 0. When the system is empty, the server will move to a location separate
from either queue to idle. For notational convenience, we denote the event of the server being idle as the
server visiting class 0. Figure | depicts our maintenance model. where solid black circles represent
machines, m and » arc the respective lengths of queues 1 and 2, and g represents the rate of

service completion present only while the server is working on machines with class-i failures.
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Figure 1: Depiction of the maintenance model.

The service policy that the mechanic (henceforth referred to as the server) uses to serve customers
from either class may be exhaustive, where the server stays at one location and serves that class until its
queue empties, or priority-based, preferring to serve one class (i.e., the high priority class) over the
other (i.e.. the low priority class). Among the priority policies. both non-preemptive and preemptive
resume are considered. Under non-preemptive priority. the server switches to serve the high priority
class if an arrival is observed while the server is idle or in a switch-in time, or after a service completion
of the low priority class given that there are high priority customers waiting in their queue. Under
preemptive resume priority. the server always switches to serve any high priority customers upon their
arrival to the system. However, if the server happens to be serving a low priority customer at the time of
switching, the partially rendered service of the interrupted customer is retained when the server
eventually returns after emptying the high priority queue. Let Z denote the type of service policy in
place, such that

I
(3]

. if class 2 has non-preemptive priority over class 1,
1. ifclass 1 has non-preemptive priority over class 2,

=40, ifthe exhaustive service policy is in place,
I . if class | has preemptive resume priority over class 2,
2, if class 2 has preemptive resume priority over class 1.
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For i=1,2, class-i service times are assumed to be non-zero in duration, having a (continuous)
phase-type distribution with representation PH( [_ir_,B,-) of order b (e.g., see He [10], p. 10). Service

times are assumed to be independent of each other and of the failure times. Similarly, class-i switch-in
times are assumed to have a phase-type distribution with representation PH(ZJJ,,S;) of order s,. A
class-i switch-in time can be understood as the period of time it takes the server to prepare before
beginning work on the class-i queue, after previously attending to something else (e.g.. serving
customers in the queue of the other class or being idle). We allow the initial probability (row) vector
v, to depend on the class that the server is switching to (i.e.. class /) and where the server is

switching from (i.e.. class ;). We further assume that switch-in times are independent of the service
and failure times. as well as the assumption that switching from a switch-in to class j is the same as
switching from serving class j . For example, if class 1 has higher priority and the server is currently
conducting a switch-in to class 2 when a class-1 failure is observed. the initial probability vector y, = is
used for the new switch-in to go serve class 1. In the same way, if the server switches after a class-2
service has completed (as in the case of class 2 emptying, or under non-preemptive priority), or during a
class-2 service (as in the case of preemptive resume priority). y, is also used. Finally, for the

switch-in times, we relax the non-zero duration assumption and let 75 =1 Y. ¢ be the probability of a

switch-in time from class j to class i being zero. where ¢ denotes an appropriately dimensioned
column vector of ones (in general, the notation ' will be used to denote matrix transpose).

Due to the nature of this model. the analysis is conducted using matrix analytic methods. In
particular. the system can be represented as a level-dependent QBD process, with the length of the
class-1 queue serving as the /evel of the process. The associated infinitesimal generator is of the form

0 1 c-2 -1 C

3
(8 €]
( Qn.u Qn.l 0 o 0 0 0

ey 0 2% -0 u 0
0 o5 o 0 0 v
C-21 0 0 o - QE 202 Qﬂﬂl(‘— ! 0
. ic] i€l €]
C-1 0 0 0 - O ycy Qo e Q¢
C
c \ 0 0 o - 0 Qe Q.[:'_t' /

€]

where 0 represents an appropriately dimensioned zero matrix. Note that O'“! is block-structured, in
such a way that the sub-matrices (or blocks) Q! contain all transitions where the level changes from
i to j.The particular forms of these blocks will be specified over the next two sections for each of the
aforementioned service policies. In addition, the superscript [C] of (', as well as its associated
blocks. corresponds to the number of machines in the system that is being modeled. and this choice of
notation will be helpful in the upcoming sojourn time analysis.

The primary goal is to solve for the steady-state probability vector 7 of the process, and use it to
derive the steady-state distribution of the amount of time it takes for a machine to be repaired and
working again. after it has failed. We partition 7 as 7 =(x,.x,.....7.). where 7z, denotes the
vector of steady-state probabilities associated with the m™ level of the process, m=0.1,....C . From
Equation (1), we immediately obtain the following equilibrium equations expressed in terms of the
blocks of Q'
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'] ] ] —_
O+ +7z,.0 m=12,....C -1,

o A o+l
— ] o]
0= EC—IQC—LC + Ecgc.c:

where 0 denotes an appropriately dimensioned row vector of zeroes. Based on the procedure proposed
by Gaver et al. [7], these equilibrium equations can be solved (in terms of x,) to obtain

z,=n[]s. m=1.2....C. @)

=1

where the set of matrices {S§.S......8-} satisfy the recursive relation

=0 (@) +8,,05 )", j=1.2,....C -1,

7 AL L4

with
&=~ cﬂc(QECc])_l

If we define & =05+ SO, then z, clearly satisfies

& = 0. 3)
Moreover, since all steady-state probabilities must sum to 1, it follows that
[ s m Com
l=me=>r,e¢=>m[]se¢=m| > ]]s¢| @
m=0 m=0 4=l m=0 =1

where we adopt the convention that H;S,g' =¢'. Equations (3) and (4) provide a linear system of

equations that may be solved for z,. Once 7z, is obtained, we can recover each =,. m=1,2,....C,
from Equation (2).

3. Exhaustive and Non-preemptive Priority Service Models

3.1. Steady-state probabilities

In this section. we focus solely on exhaustive and non-preemptive priority service policies (i.e..
T e{-2,-1.0}). As such, we need not consider server movements that interrupt the service of a
customer from either class. To properly model the system. we must track four variables, namely
(X.X,,L.Y). Here. X, is the length of the class-1 queue (and is denoted as the level of the process),
X, 1is the length of the class-2 queue, L {0.1,2.3,4,5} indicates the position of the server (0: server
is idle: 1: switch-in to class 1: 2: serving class 1; 3: switch-in to class 2; 4: serving class 2: 3: switch-in
to class 0). and ¥ denotes the phase of the service or switch-in time which has possible values
depending on 7 in the following way:

({0} LiFL=0,
1,2,...51} LifL=1,
1.2y} L ifL=2,
Y € Qy(L) Al N :

....... 3] . a,
11.2 sap  LifL=3
{1.2.....ba} L ifL=4,
(11,250} LifL=5.
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Let z,,;, be the steady-state probability that X,=m , X,=n ., L=/, and Y=y . where
0<X, <C, 02X, <C—-X,,and L and Y take values from their respective supports above. As a
result, we have

Ty = (M000.0, M0.051s o Mo055 Ly rees Ay o)

where
Moy = (Monsis s Monss s Momals - eos Mo, )

is a row vector of length s, +b for n=1.2.....C. For non-zero levels, the m" steady-state
probability row vector is given by
zrr = (Err.()’&n,l’ ters gn.(.’—m)’ mz1,

where

oo = (Tonne oo o1 g - Ao oos Tn025,)
and (for n=1,2,....C—m)
T = Tonmdds os T s> Fmm 205 -+ Wnm 28> Tomn 35 s B35y s Wmm Ly =+ Wmn sy )
are row vectors of length s +A and s +b+s +h . respectively. Clearly, level 0 has
145, +C(s, +b) states, whereas level m. m=1.has s+ +(C—m)(s;+b +5 +5h) states.

In order to determine 7 using the QBD procedure described in the previous section. we need only
specify the blocks of (! defined by Equation (1). In what follows, let &, be the standard
Kronecker delta function which equals 1 if i=j; and 0 if 7# j. and let I, be an identity matrix of
dimension . Furthermore, let B,,'=-B¢ and S '=-S¢ be the absorption rate (column) vectors
corresponding to phase-type representations PH(/.B) and PH(Zﬁ,S}), respectively. The diagonal
blocks of (! can be expressed as

0 l 2 SR S | C

Al care | 7, 98, | 0 00

s 0 AEC'
Y;}.:ﬁ;-. 2 ijﬂ.il’:l‘b :

0 r A;

(C—1 ]a:)'): +ihy

0 0
—Cotly 45, + o
- [ Soo So l

) b‘ L ¥ a9 i
_[(‘_ n.la“.ﬁ +hy T ! _0""[—2
o 0 B

0 0
r , .
[ 0 By,p, ]

while for i=1,2,...,
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0 I 2 e C—i—1 C—i
0 [ O WDy 0 - 0 0
1 w)f  of, wn)i - o 0
: €] .
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c—i—1| o0 0 0 o Qe WD,
) C C
C-t \ 0 0 N 7 ) ),
where
-
L S 8,8 "
—(C—i)aly .p, + [ 0 4’5{[—1 ] Cifn=0.
Q:ﬂ?.ln =4 51 Sh.B , 0 0
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—(C—i—=n)al, (b 15208, + Jifn=1.2.....C—I,
e 0 0 5 8B
| 0o 0 0 B
. [
(i { (1=6ra)ly O Srady, drmieB, | 0 _o
wp)dl = 0 Iy, 0 0
(C—i= )0l by se1+n Jifn=1,2,....C—i
and
0 v if |
E AT n=1,
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0 0 0 0 )
’ 0] n s =2,300104
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With regard to the off-diagonal blocks of O’ we first have

0 I > il
0 [ (C—i)auls 1p, 0 0 0 \
0f 2 0 0 0%, 0
C—i—1 0 0 0 Qf[il'l.f i-1
C—1i \ 0 0 0

for i=1,2.....C -1, where

c]

L+

=(C—i—-mondypgip - n=12,....C=i=1
Moreover,
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Finally, for i=2.3.....C’, the remaining blocks of (*“' are of the form
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3.2, Sojourn time distribution

Next, we turn our attention to deriving the class-1 sojourn time distribution of a broken machine,
representing the time between when a machine suffers a class-1 failure and when it is up and working
again. To do so. we require the steady-state distribution of the system immediately prior to a class-1
customer arrival. which can be obtained as follows (e.g.. see Lakatos et al. [ 14]. Chapter 9):

Gty = P((X1,X2,L, Y} = (m.n.l.y) immediately prior to a class-1 customer arrival)
steady-state class-1 arrival rate from state (1, n.[,y)
- steady-state class-1 customer arrival rate
B (C—m—n)et Tty
- L. E_u_- L E (C—x)—x2 JOU Ty, xp iz

o [(n —m ")mn_u.!_}'
zn E.l‘-; Zn' EM[(' X1 x:)ﬂ_r|_l'_‘.~.n',: '

Note that the right-hand side of Equation (5) equals zero for all / and v when m+n=C. as
this corresponds to states where every machine has already suffered a failure (and so there are no
working machines available to fail).

We must also consider the impact that the arrival may have on the server. should the arrival be to
an empty class-1 queue. This distinction is important, since as we can see by contrasting the blocks

15! and (7). only an arrival to an empty queue may trigger the server to move (causing a change in

(&)

L). as any additional arrivals to a non-empty queue simply increment X, . For either possible service
policy, if Le{0,3} (ie. the server is idle or switching into the idle state). then the server will
immediately begin a switch-in to serve the class-1 arrival. Let

ip
400,00 = q0,0,00+ Z q0.05,i
i—1
be the probability of the system being in any of these states immediately prior to the class-1 arrival.
Furthermore. if L =3 (i.e.. the server is conducting a class-2 switch-in). then the server will similarly
initiate a switch to serve the class-1 arrival only when 7 = —1. As such, let

C-1 5
Go,+ e =01 E Z Gon3y

n=1y=I
represent the desired probability that L =3 immediately before the class-1 arrival.

In order to construct the distribution of the waiting time (to reach service). we consider how long it
takes for the queue in front of the target customer to empty. as well as the duration of time (if any)
required for the server to switch to the target customer once at the head of their queue. Since we are
considering an arrival to the system, the state of the process immediately prior to the arrival cannot
possibly be one with X, +X, =C ., as therec would have had to be at least one machine working to fail.
Thus. we construct initial probability vectors in the style of a queue featuring € —1 total machines.

We begin by considering the system with X; =0 prior to the arrival. Let

Gon ™= (1 =8z 1)qomars---s(1 =8z 14013575 G004+ s {{(1.;:,4_113} (6)

be a row vector of length s, +8, corresponding to the possible states when X, =0 and X,=n,
0<n<C-1. Since we have extracted the probability ¢,,;. when 7 =-1. we must remove the
probabilities of starting in the states where L =3 (in the class-1 non-preemptive priority case). When
X =X, =0, it follows that the only possible states immediately after the class-1 arrival correspond to a
class-1 switch-in, which when finished (if not interrupted by a class-2 arrival, should Z =-2), leads to
the completion of the waiting time. The initial probabilities for these states are contained in the row
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VECIOT  Gopasl, + QoY - which when combined with 4, in Equation (6), allow us to construct the

full initial probability vector when X; =0, namely

gl) = (gO.O.O,OZm +‘f0,+.3,- }_IEI’QO,I’ sey QO,C—I)’
which has length s, +(C—=1)(s, +5,).
When X, =m =1 prior to the arrival. there is no shifting of probability mass required. We can

simply construct ¢~ in a way which is analogous to how we originally defined 7, (although under
the framework of a system with one less machine). Specifically. we have

qm = ILIqlm,l.l"qaw.l qm.(' 1= ):

VYm0 1, m Al s Ym0 2 Tyre-n m.l_'__r|ls
q, 5= (moa G015y Gm 021 0.2, )

q - (qxll.'l.l.l ' QDr.n_-l,l.'hJ

=m.n
=g 4

Note that ¢ is a row vector of length

5+ €16+ 8+ s A+ - 1-m+h s el =5+ 6 wh s +8) and

G€ =1=Gooeattl — oozt Where gy o7+ ¢, 20740 is the probability that the machine immediately
begins service after suffering a class-1 failure.

If we simply consider how the queue length ahead of the target class-1 customer changes, we can
define, for a system with m total machines,

m m— | m-—2
] [m]
( Qm,m Qm.m—l 0
| |vne]

0 Qm — 1 m—1 Qa.n— 1,m—2
0 0 0 [1e]

-2 m—2
2 0 0 0 o ol o

| A
1 0 0 0 . L0

o \o o 0 o)

which can serve as the rate matrix for a phase-type representation of the target customer’s waiting time
distribution. where the level of the process decreases until it is eventually absorbed out of level 1 or
level 0. Note that we have retained the contributions from class-1 arrivals on the main diagonal terms of
O™ and Q). as they are ultimately required for the final analysis. For the immediate discussion,
however, we proceed as if these were not included, and hence would not cause non-zero row sums that
would imply positive transition rates to absorption from unintended states. Moreover, the level of this
rate matrix corresponds to the length of the queue in front of the target customer. which is clearly
different than the total class-1 queue length. To adjust for this change relative to the original QBD
process. and to the fact that the waiting time ends when the target customer is eligible to receive service,
we make use of the modified blocks Oly) and O\ Specifically,
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] | i 2 m—1 m
0 !” mdz ol + 8, mdp aone Py yll.\:-'ﬁ1 0 v 0 0
0 ]
I [ ; } Al (m—Deoly, e, - 0 0
B, ,‘1’15 I o
0] ] "
b 2 8}_"_; 3;1? ‘;1—6;.4:‘[—‘ _"'Ag'l' =] 0 0
Qun =< . _"'—H -
2 g 5 ! ] .
m—1] & 0 0 A aly, i
I.-1 L B:JJZ“ ] m—1 2s1t+in
[ 0 | : )
m \ 5_[__ i 1_3;]_1'_!_1, | 0 0 Lo { 1 — 5J_ - | 11 A

m]

is structurally similar to Q8. with the idle server state and class-0 switch-in states replaced with
class-1 switch-in states which lead to absorption. Conditional on Z = —1, the transitions after a class-2
service completion are redirected towards these states. To achieve this. we multiply (1-46;_,) into I’
to remove those possible transitions, and redirect the system to X, =0 with the transitions in column 0
of H-jgl_ If class 1 has non-preemptive priority. then the server will switch to serve class 1 after a
service completion, and from the target class-1 customer’s perspective, the class-2 queue length no
longer matters. For this reason, we also multiply &;_, into the failure rates of other machines. since
once they have reached the front of their queue (and the server is switching to serve them), an arrival
can only impact the target customer if it is a class-2 failure and class 2 has non-preemptive priority. This
would result in the server leaving the target class-1 customer until the class-2 queue empties again. In

addition, if the system would transition to these states following a class-2 service completion (with
probability 7)), then the process is directly absorbed without visiting the class-1 switch-in states.

Next, we have

0 1 2 m—2 m—1 m
0o /0 0 0 - 0 0 0)
1 0 0j, 0 0 0 o
= || 2 l] D (:j-‘ . O 0 U
Q|| I{l’ . ' 1.0 ‘ ‘ ‘
m-2l0 0 0 - @, 0 0
m=1\0 0 0 - 0 Jig 0
where
0 0
QT‘(} - ‘SI,—..’ Q(’),Iyu _{f” yll{f,]‘-ﬁz - 51-—3‘2;.“‘
0 0

The definitions of Q' and Q%' are almost identical, except that the block O leads the process to

absorption automatically (instead of visiting level 0 of the process) when X, =0 or when X, >1 and
T # —2. as there are no longer any customers ahead of the target customer and the server is already at
the class-1 queue.

If the assumption that no class-1 customers could arrive behind the target customer held true, then
we could claim that the waiting time is phase-type distributed with representation PH(Q,Q[C'”). as
there are C'—1 customers in the system which are not the target customer (and. in theory, could be
queued ahead of it) and during this entire waiting time period. the target customer will never be at risk
of failing again. However, this would obviously be an incorrect assumption to make since if a machine
experiences a class-1 failure. while it does not add to the list of machines obtaining service ahead of the
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target customer, it does impact the rate of machines experiencing class-2 failures (due to the finite
population assumption) which, depending on the service policy, may need to be serviced before the
target customer. To address this issue. we propose the following rate matrix:
c-1 c-2 C-3 .- 0
c—1focm oo 0 0
c-2| o gl o 0
C-3 o 0

m— 1
0 0
o, 0
0 Q[m]

m—2m—1
0 0
0 0
Lo o

0
(mﬁ;l_gfllf.;.

0

Q'K"I] =1
/

{.).[;"1J (m— j)oal, p,-

Note that through the use of O™, the rate matrix R can reduce the system size by a single
customer whenever a class-1 arrival would be observed. The blocks of (' include the same O}
blocks defined previously. as well as a modified (7', When the queue length ahcad of the target
customer is zero, a class-1 arrival no longer increases the range of combinations of 7 and Y that the
system must track from s, +b, to s +5h +5,+b,. Also. unless 7 = -2 . we do not consider the class-2
arrival rate when X, = 0. This follows since a class-1 switch-in time can only be interrupted if class 2
has non-preemptive priority.

To pair with the rate matrix R. we define ®=(q.0.0,....,0) to be the corresponding initial
probability vector. The interpretation of @ is that the arrival of the target customer will always initiate
the system in consideration of C —1 total other customers, which is only reduced further by future
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class-1 arrivals. As a result. the waiting time of our target class-1 customer is phase-type distributed
with representation PH(®,R). Moreover, under exhaustive and non-preemptive priority service
policies, a customer’s service may not be interrupted, implying that the sojourn time is simply the sum
of the waiting time and (independent) service time. Thus, it immediately follows that the class-1 sojourn
time is phase-type distributed with representation PH((D, (¢, 701 + %,+,3,-7£1])£1),T) . where

_[R (-Re)B
7= { 0 By l ]

Moments of the class-1 sojourn time distribution can easily be computed. as moments of a
phase-type distribution are readily known (e.g., see He [10], p. 18). Finally, we remark that in order to
obtain the corresponding sojourn time distribution for a machine that suffers a class-2 failure. one can
simply switch all class-1 and class-2 parameters and distributions (the value of 7 will also need to be
adjusted if the non-preemptive priority service policy 1s in place). recalculate the steady-state
probabilitics, and then repeat the above analysis.

4. Preemptive Resume Priority Models

We now turn our attention to the preemptive resume priority service policy. The primary way that
preemptive resume priority differs from non-preemptive priority is that the arrival of a high priority
customer to an empty queue (of its class) will trigger the server to begin a switch-in, independent of
their current location. More precisely, the server is now able to interrupt the service of a low priority
customer, whereas previously the server would only immediately change location (after observing an
arrival) if they were idle or in the midst of a switch-in time. Eventually. once the high priority queue has
been emptied again, the server resumes service with the interrupted customer in the low priority queue.

Unlike the previous section, whether class | or class 2 has preemptive resume priority will greatly
impact the derivations needed to characterize the class-1 sojourn time distribution. As such. we consider
cach case separately in the following two subsections. In Section 4.1, we assume that class 1 has
preemptive resume priority over class 2 and we determine the distribution of the time spent waiting and
in service for a target class-1 customer. In Section 4.2, however, class 2 is assumed to have preemptive
resume priority over class 1. and we seek to derive the sojourn time distribution of a target class-1
customer.

4.1. Casel: T=1

4.1.1. Steady-state probabilities
To model a system in which class 1 has preemptive resume priority, we keep track of five variables
(X, X,,L.Y.Y,). where X,, X,, and L are as previously defined in Section 3. Moreover, Y
denotes the phase of the service (if serving class 1) or switch-in time with possible values depending on
L as follows:
{0} if L =0,
{1L.2....si} LifL=1,
M, 1.2....b JifL =2,
YEQPI](LJ {1, 1 l
{1,252} LifL=3,
{0} JifL =4,
({1.2....50} .ifL=5.

The new variable ¥, is intended to keep track of the phase of service of a preempted class-2 customer,
taking on values (which depend on X)) according to
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{0} if Xy =0,

[]]. '
Y>eQp (Xa) =
2 € Qy, (X2) {{I.’.’.“.,bz} ifXa > 1

Let 7

sy be the steady-state probability that X, =m, X,=n, L=/, Y=y, and ¥, =y,. where
0<X, <C., 02X, <C-X,,and L. Y. and ¥, take values from their respective supports above.

Treating X, as the level of the process. define
7_11(;']:( ¢ oono‘-- En[)ltl)ssooslllnlls a’_llnl_li)
to be the 0" steady-state probability row vector. in which

1 _
7_z[0;; (0,n3ll's" ﬂ([)f)]s3lb,=ﬂ([),n3"la""ﬂi[)!}r,3,32,b~,'!;r0rr40h" ”[1]40&,)

is a row vector of length $,5, + b, for n=1,2,....C . Therefore, level 0 consists of 1+ 5, + C(s:h, +b,)
states. For m =1, the m™ steady-state probability row vector is

ZI.-:;] _(ﬂlll ﬂlll Al

LASURVERAE R E RS N m

where

[1] — 1 1 1
0 (mUIIO~"‘!ﬁ:[n,!),l,sl,mﬂr[w,](l,ll,(la' ;[nl)'*b,o)

and (for n=1,2,....C—m)
LA} (1] [1] U
Tmn = {Em,u.l.l_l preey EHI'_H,|,|.})1-‘le!.".| 2.1 o1, 5.0t

2 ! ) ) )
w20 man.2,1.ba Fman, 221 2.0 b

have respective lengths of s +# and (s55+h)h . Clearly, level m  possesses
s +b +(C—m)(s;+h)b states for m=1. Let z" =(z".z".....2") be the steady-state probability
row vector for the full process, which we can solve for using the QBD procedure described in Section 2.
However, for notational convenience, let 0! now denote the corresponding infinitesimal generator
for a system with ' machines and class-1 preemptive priority. constructed in the manner of Equation
(1), but with blocks denoted by O' rather than O'. Letting ® denote the Kronecker product
operator, the diagonal blocks of O'“Y' can be expressed as
] I 2
ALY (.m,_,r[ Vs ©Bs 'h’:ﬁﬂ ] o
o 0 il
0 r.l
0
a0

—Col 0 0
e S‘:_U So

Alc]
U . - -
S>@ f},: é:]'z & fp,:

- ("_”.afhh- 21+
( 127 R 0 B,
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1 0 0
= X
[ 0 z—ﬂl.?ﬁz }
while for i=1.2,....C,

0 1 2 e C—i1 C—i
0 (ol w0 0 U
1 o oSl wpSt oo o 0
ol _ 2 0 0 0 0 0
R S
c-i \ 0 0 0 0 0S¢ J
where
r . 51 :s';]lﬁ .
—C=1)al; . p, + =l Lifn =10,
) |+f1 I» 0 B]
.1l
]‘,r‘m]:
_ _ 5 S
~(C—i—=n)al,  pp + [ 0' —Ogﬁl why, ifn=12,...C~i
1
and
(C—ielyp 2B, . ifn=0,
W) =

(C—i—n)aaly, o+ ifn=1,2,...,C—i—1.

Moving to the off-diagonal blocks of Q' we first have

0 ! 2 C—i—|
0 fl:C_i)al’.!l"f'b[ n 0 e (] \
.
! 0 QJ[.HI.] _0 0
0! =2 0 0 03l, 0
i+ y 4

C—i-1 0 0 R

c-i \ 0 0 0 0

for i=1,2,....,C—1, where

C.1] ; . \ .
05— (C—i—n)euly, pyp = 1.2, C—i— 1,

Furthermore,
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C—1
C

o5 = (c- n)a,[grl,:] e ];a;,,_,._n=1,2,....C—1,

where

o) v O e
== 0 ; ':] b?'
Bo.v,, M2Bos

.....C". the remaining blocks of O'“'" are given by

Finally, for i=2.3,.

0 1 2 e C—i—1 C—i C—-i+l
(0fy 0 0 0 0 0\

C,1 .
o, 0 o
Q{[c:{;" 0 Q::i.: 0

where

Qlp, ifn=12,...,
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4.1.2. Sojourn time distribution

When considering the time a machine spends offline after suffering a class-1 failure, we are again
able to decompose the failed machine’s sojourn time into its waiting time (to reach the server) and time
in service, since a class-1 customer does not experience any service preemptions. We also note that
unlike the exhaustive and non-preemptive priority service policies. when considering the class-1 waiting
time in isolation, we do not need to track the class-2 queue at all. As a result. we can disregard all
arrivals following the target class-1 customer and this greatly simplifies the subsequent analysis. We
begin by modifying Equation (5) to determine the corresponding steady-state distribution of the system
immediately prior to a class-1 customer arrival:

q,[”!ﬂlh_ = P((X;,X2,L,Y.Ya) = (m, n.f.‘\‘. yo ) immediately prior to a class-1 customer arrival )

(C— m—n]n

vy
Y s B B Koy (€ — 31— 52T e

As before, the right-hand side of Equation (7) is equal to zero forall /. y.and v, when m+n=C.
If a class-1 customer arrives to a non-empty queue, then this arrival does not affect the server and
the waiting time is simply the time it takes to empty the queue of class-1 customers in front of this new
arrival. On the other hand. if the target customer arrives to find an empty class-1 queue. then the
corresponding waiting time is simply equal to the switch-in time, which will lead to an initial probability
vector dependent on whether X, =0 ornot. Let
[1] 1]

L1
L
qo0.eee —Doo000t E 40050
=1

N

be the probability that the server is either idle or conducting a switch-in to the idle state immediately
before the target class-1 customer arrives (since both queues were empty). Furthermore, let

-1 4

q(} L Z Z Z Z q[:]l.:‘]l‘(,_\‘._\':

=li= _\ ._!!} |,J|_.3.:1z,,:;_n:

be the probability that the target customer arrives to an empty class-1 queue, while X, =1. We separate
these two events. despite both yielding a waiting time that only consists of a class-1 switch-in, because
the initial probability vector may be different in either case. Taking this into consideration. we may now
construct the initial probability vectors for the waiting time distribution. Letting the level of the process
equal the number of class-1 customers ahead of the target customer. the initial probability vector
corresponding to level 0 is given by

N

1 1
g _q‘:]_l'_l.n.- ozm f 4,

ay NP CTE

which. as we can see, simply initializes the switch-in time, which has a phase-type distribution. For
non-zero levels. it is possible for the server to be in the midst of a class-1 switch-in or service time. For
each combination of m, /., and ye€{l,2}. we obtain the desired marginal distributions by summing

the probability mass that was spread out over different states that were used to track X, or Y, namely

C—f"— I .
1 1 1
qjlulu L. qLJ 0.0.v.0 + Z Z qr.n.lri IRRTE (8)

n=1 _\-zr_ﬂ'}.l; (n)

Equation (8) may then be used to construct the initial probability vector corresponding to level m
l<m<C-1:
(1] 1] [1] o

I = '
iu.l - (-.qlll,-.l,l.l """ el it LTS R RTERE 4 t.lh,.l.}‘
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These vectors may then be collected. including the probability vector for level 0, to construct the full
initial probability vector for the process:

g =g qll,

Note that cf] is a row vector of length s +(C-1)(s+4) and qme'—l qé”... - ol»l... o(f],

where @b/ + ¢ ..AY is the probability that the machine immediately begins service after

suffering a class-l failure.
We next focus on designing a rate matrix corresponding to this waiting time for a system that may
have up to m customers waiting in front of the target class-1 customer. This ultimately results in

m m— 1 m—2 ' 0
o, 1] S

( Q"" rrt Qm ;u 1 0

Al =[e ]

0
0 Qm—l m—1 Qm : lom—2 e 0
0 0 Q[tll 1 ) 0

m-2.m-2

-‘[':?rzll Q (. | ] 0
=[m,| =[m,1]
0 1.1 | QE.U
=[m. 1]
0 0 Q([l.{l }

where
is the class-1 switch-in time rate matrix,

is a zero matrix on account of the service completion of the lone customer queueing ahead of the target
customer leading to absorption.
Aml] {S §")’1'£}1:| i=

i 0 BI

can track the s, switch-in time phases, of which a completion leads to the start of a class-1 service, and

) 00 =23
H—‘ = 1 ] 1= » 7"'am7
0 BB,

since a class-1 service completion leads directly into the start of another class-1 service. As previously
stated. we do not need to consider any arrivals following that of the target customer, since they do not
impact the waiting time. Therefore, the rate matrix corresponding to the waiting time for a class-1
customer in a system with C total customers is simply R!" =0'°" and it subsequently follows that
the waiting time of our target class-1 customer is phase-type distributed with representation
PH(Q“],'R[”). Finally. the class-1 sojourn time distribution of a broken machine. consisting of its

waiting  time plus an independent service time, can readily be represented as

PH((Q“],(QE],.,.. 01t Goien .}’Lol)ﬁl),T[”), where
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T =

Rlll (_ngl)él
0 B |

4.2. Case 2: 1T=2

4.2.1. Steady-state probabilities

We now consider the situation in which class 2 has preemptive resume priority over class 1. We
remark that while we can use the results for Z=1. by swapping the relevant parameters and
distributions, to solve for the steady-state probabilities of the process. as well as the time until repair for
a machine that suffers a class-2 failure, we would be unable to characterize the sojourn time distribution
for a class-1 failed machine. As such. the purpose of this subsection is to act as a compliment to the
analysis of the previous subsection. so that the sojourn time distribution for the lower priority class of
machine failures may be found when the server is employing a preemptive resume priority service
policy.

First of all, the construction of the infinitesimal generator will involve many of the same techniques
used previously, however this time tracking the service phase of the next class-1 customer in line (if
any). Moreover, due to the preemptive priority of class-2 customers, the process does not need to
consider states where the server is conducting a class-1 switch-in or service time whenever there are
class-2 customers in the system. Thus, we track the variables (X, X,,L.Y.Y)), where X,. X;.and L
are as previously defined. while ¥ denotes the phase of the service (if serving class 2) or switch-in
time with values depending on 7. in the following way:

({0} JfL =0,
(1.2.....5} ,ifL=1.
veoln) =41 ke
{1.2,...s2}  ifL =3,
{1.2,....b2} ,ifL=4,
L{1.2,....50p L IfL =5,

The variable Y, is used to track the phase of service of a class-1 customer and is determined at the
arrival instant of a class-1 customer to an empty queue. as well as upon a service completion of a class-1
customer that segues into the next class-1 service time. Thus, the possible values of Y, are

JE ) PR {0} Lif X, =0,
v e 0 (x)) =
L&y () {ue ..... bl L if X =1

We define zf,,]”hyl to be the steady-state probability that X, =m, X,=n, L=/, Y=y, and
Yi=y. where 0=X,<C, 0<X,<C-X,, and L. Y. and ¥ take values from their supports

above. Corresponding to the 0" level of the process. let

2 _ o _[2] [2 [2] 2] [
Ty = m0.000 005,100 T0,0,5,50.00 Fo.1++ - Foc)s
where
[2] 2] 2] [2] [2 \
Ty = ( T n 30,00 Eﬂ.rr,.?..\_yﬂ‘ a1 00 H{]_md.hg ,U;'

is a row vector of length s, +h, for n=1,2,....C, so that level 0 has 1+s,+C(s,+5) states. For
level m =1, we define

2] _

22 = (2% 7 CI

mdr J.l:m C—m!?
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where
2] _ ([ [2 2] [2] 2] 2] \
Eo = (T o000y T 00,200 B 015y Fon0,2,0.00 %+ > om0 2.0, )
and (for n=1,2,....C—m)

72— {Ilﬁl 2 2 el
=m,n m.n3.1.1 P Uman 30 by Tman 3200 m.n.3.5.0 0
e e 2 e )
mond, 00 A by T 4,2.1 (N NN
are row vectors of length s +5b and (s, +5)h ., respectively. In keeping with the same notational
convention we adopted in the previous subsection, we denote the steady-state probability vector for the
overall process by 7 =2, 7} 72y . which may be obtained via the QBD procedure outlined in
Section 2 (in which O/~ denotes the infinitesimal generator for a system with ' machines and
1 i v 1 7 i 1 c.2]
class-2 preemptive resume priority, structured in the style of Equation (1), but with blocks Q).

When considering the blocks of (/! we first remark that Of;” is actually identical to (' from
the exhaustive and non-preemptive priority service models. This is because unlike when 7 =1, we
must now track phases of class-1 service with our fifth state variable ¥, . not class-2 service phases.
Since X; =0 in this block. there are no class-1 service phases to keep track of (i.e., ¥, =0 for all
states within this block). and the state space of the level 0 block reduces to that of the aforementioned
service models. For i=1,2,....C, the other diagonal blocks can be expressed as

0 1 2 e C—1—1 C—i

/0 wpS? o . o 0

o) oSt wmST o 0
2]
0

il
0 (LD]!(;,:l ig2
C—i-l 0 0 Qfe,, WD

e- o o . o ofh

S1 @y,
0

—(C—i)atl,p, 41, + [

2]

QJ,."J:

. [ 52 S['].Eﬁ‘: . . .
—(C—i=n)al, b + [ o B;»_- wlp, .ifn=1,2,....C—i,

©=ie | ¢y, HieB, |oh, itn=0,

(C—J‘—ﬂ)agf“-l_b:::_hl Jaftn=1,2,..., C—i—1,
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([ 0 0 _—
— 0 . ) in= [
EO.? Y-_“ & Iy, EII—B’O_Z =
(D) =
0 0
IEZ:I!» .if”:2.3..‘...(‘—f'-
i 0 Qﬂl’l.lﬁg ] l
As for the off-diagonal blocks, we first have
0 | 2 C—i—1
0 ( (C—i)ay Ly pyip, O 0o - 0 )
C.2
1 0 o, o 0
ol _ 2 0 0 05, 0
o N l cal
C—i—1 0 0 0 P
c—i \ 0 0 0 0

for i=1,2,...,C—1, where
Q”+| = C—i—=n)oul, pyp, n=12,...,C—i—1.

In addition,

0 l 2 c-1
- Al
0 fCalg’[rmuygl ﬁi:lﬁl] 0 0 0\
! 0 0yl o
z c
Q[[)ClI: 0 0 L 2
C—1 0 0 0 Q{iﬁi—]
¢\ 0 0 0 o )
where
an:i" IC na]’r‘sl-fh_ﬁ n—l_, .._C |1
and
0 o2 c-2 C-1 C
0 ( ; ! 0 0 0 0 0\
0l -
0Bo1 BoaYy,
ca ! 0 0 0 . 0 0 0
Gio’= 2 0 o0 . 0 0 0
€-2 0 0 0 0 0 0
C_l\ 0 0 0 0 0 0}

Finally, for i=2.3,...,C, the remaining blocks of (/! are given by
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Coi1 C—i C—i+l
0 0 0o\

0 0
0 0

0 0
\ 0 0

4.2.2. Sojourn time distribution

When considering the time between when a machine suffers a class-1 failure and when it is up and
working again in this particular model, we come to realize that. for the first time. we are unable to
uncouple the time spent waiting from the time spent in service. This is due to the unique situation that
this service policy presents, in that the target customer’s service time can potentially be interrupted due
to the arrival of a high priority customer. Therefore, instead of only being concerned about the queue in
front of the target class-1 customer emptying. we will model the total time it takes for those in front of
the target customer. and the target customer itself, to complete service and leave the system.

Analogous to Equation (7), we find that the steady-state probabilities of the system immediately
prior to a class-1 arrival can be obtained via

qi;”_m,l.‘,_ =P{(X|. X2, L.Y.Y)) = (m.n.l.v.y;) immediately prior to a class-1 customer arrival)

(C—m—n_}xm

_ mad VY
Zn X_r: . L: }.::| R( — X1 —x2) T‘.E‘T'._\g WL

which also yields a value of zero for all /. y., and » when m+nrn=C . In anticipation of
constructing the various probability vectors involved in characterizing the class-1 sojourn time
distribution. we first define

. Sy
2 _ (2 ]
900000~ 9000007 Z o500 9)
=1
to be the probability that a class-1 arrival finds the server idle or switching into the idle state. In addition,
we group the other class-1 arrival instant probabilities into the following row vectors:

2 _ (g2 2 2 2] -
oy = YWonsio Gon4.050)

2 . 7

- Tl ! 5

(_"J[;',u . (-q}nlﬂ.l.l N ) 0200, )
[ — (4 2 2] 2

gm;” = Wmn3.11 -qm.h__%.l.b-_ Amn32,1 qm.u.;i..v;.b] '

2| [2] 12] 2]

Tnnal, -q.:n:n.-i.l.b| T4 21 :fl\4.h_1.fl| )
We note that if the target class-1 customer does not arrive to find an empty class-1 queue, then this
arrival has no impact on any of the variables other than X,. Therefore, letting p, . contain the

ordered initial probability masses for states where X, =m and X, =n. we have

2l om= 1.2,....C— 1.

Posin = I

However, if the target class-1 customer does arrive to find no other class-1 customers present (but with
X, =z 1). the characterization is not as straightforward. Even though the server will not be prompted to
move, the first arrival of a class-1 customer requires that the system now track their eventual service
phase. Therefore. we let

163




© Granville, Drekic

Pin= ﬂl;]r '::':']EI" n2l.

The last possibility for the arriving target customer involves finding the system empty of customers of
either class requiring service, which occurs with probability ¢l... given by Equation (9). This sees
the server begin either a class-1 switch-in time (while the system determines the initial service phase of
the target customer). or an immediate class-1 service with probability 7] . Therefore, we define

E] i} ':q[ll‘.lo.oIUI ﬁ] }ﬁ(:oooymﬁ )

With these pieces in place. we can now define the initial probability vector for the m"™ level, m=1. as
r,= ( PP P, C_m), from which we can construct the overall initial probability vector

pP=(p..P. D)

We note that the levels of this modified process span from 1 to . This is a result of the actual system
immediately prior to the arrival requiring 0 <X, <C -1 in order for a class-1 arrival to be observed.
and due to the inclusion of the target customer, the level is incremented by 1. We have no interest in a
0" level, since the emptying of the class-1 queue signifies the departure of the target customer, and as
we will see below. leads to absorption in a particular continuous-time Markov chain. Incidentally. the
row vector p has length
c e
Z [s1b) + by +(C —m)(52 + b2)s| =Cls1b) + by ) 4 ¢ “(,’ ”(&3 Fba)s;
P =

and satisfies pe'=1 (since sojourn times are certain to be positive).

As was the case for the exhaustive and non-preemptive priority service models, we must consider
future class-1 arrivals behind the target class-1 customer since they will affect the future arrival rates of
class-2 customers, who must all finish service before any class-1 customers may be served. For a model
with m total machines, in which there were no class-1 arrivals after the target customer, we would
simply have the rate matrix

m m—1 m—2 = 2 1
mo (o Qrr, 0 0 0
m—1 0 Q!::ill:.m—] Q;[::!—-l m=2 0 0
g2 m=2| 0 0 o 0 0
2 0 0 0o - @ﬁ]Qﬁ’
Lo\ 0 o 0 o)

In this case, the process is absorbed with rates equal to the service completion rates from (%~ when
residing in class-1 service states in level 1. This. of course. cannot accurately describe the entire process.
We gather the blocks of O'* which contain transition rates corresponding to increments of X, and
construct
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Together. these matrices allow us to fully describe the process via the rate matrix
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in combination with the (further) modified initial probability vector ®*'=(p.,0,0.....0), constructed as
such since the system will always start in consideration of the full inventory of machines. In conclusion.
we deduce that the class-1 sojourn time distribution of a broken machine can be represented as
PH(@", R,

5. Numerical Examples

In this section, we investigate the effect that switch-in times have on the optimality of the different
service policies, and the sensitivity of the mean number of working machines on various factors,
including the total number of machines as well as the choice of phase-type service time distributions.
Let the mean sojourn time E[S] of a target machine be defined as the weighted average of the mean
sojourn times of machines that suffered a class-1 or class-2 failure (with weights equal to the probability
of a random failure being from either class, which we select to be 0.9 and 0.1. respectively). Let Ny
denote the number of working machines. It immediately follows that

C - Zm Zﬂ zf E\{ mn :'Rm,n‘fl._‘-. . if I = { _2. 1 ,D }.
C-LmLaLi Z\-E\-j (m ")leul._u.f._\'._\': T =1,
C—Lmlalidlydy {.”H'”)“,[u_,);.f_\._\--, LifZ=2.

In order to gain efficiency from the priority service policies, we assume that the stratification of jobs
into two classes is done in a logical manner such that “small” jobs and “large™ jobs are not grouped
together. Without loss of generality, we select class | to hold the small jobs. The biggest disadvantage to
using priority service policies is that they result in more frequent switching between queues by the
server. When these switches require non-insignificant amounts of time to complete, the additional time
spent not serving customers may reduce the overall system efficiency. Therefore. we begin by
considering the effect of p., =17, the probability of a switch-in time from queue ; to queue i

being non-zero.

E[Ny] =
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For now. we set C=10 and «=0.075 (hence, o =0.0675 and o =0.0075). Let the
corresponding initial probability vectors and rate matrices for the phase-type switch-in time distributions
be given by

Zlﬂ = (p-0.0). Z‘g[l = l.'{) P-0)-
Yoy = 0.5-0.0). 1y, = (p=0.0.0)
Yy = (0.920,0), 7, = (p=0,0,0),

and
| s 0 | -1 I 0 | -2 2 0
S =— .S =— 0 =2 2. 5=— 0 -1 1]
Mg\ 0 -1 M M
0o 0 =2 0 0 -1

where M is a constant that allows us to scale the expected switch-in times. We may interpret the
above as class-dependent Erlang-2 (£, ) set-up and exponential take-down times, with both being faster
for class 1. If the server moves to class 0 instead of the opposite queue (due to it being empty). they may
complete the take-down for their previous queue and only require a set-up following the next arrival.

For the service time distributions, we consider hyperexponential-2 ( H, ). with initial probability
vectors and rate matrices given by

-1 0 L (oo
= 4. =(09.0.1), B=2 cand B =— .
£,=5,=020D, & 0 —ﬁ & 10M,| 0 -1—11

where, in a similar fashion, M, is a constant for scaling the mean class-2 service time. The mean
class-1 service time is set equal to 1, whereas the mean class-2 service time is set equal to 20 (when
My =1). Through the use of these distributions, we are. in effect, considering the mixtures of two
exponential distributions, representing the grouping of more than one type of failure within each class.

Figure 2 contains plots of both E[S| and E[N; ] under the above set of parameters (including
M =1), while varying p., €[0,1]. Due to space constraints within our plots, we suppress the legend in
all but the plot in Figure 2(a) (in particular, this same legend applies to all plots within this paper).
Rounding to five decimal places. we observe that for 0= p., <0.13351, class-1 preemptive priority
(i.e.. Z =1)isoptimal in terms of minimizing the mean sojourn time and maximizing the mean number
of working machines, whereas class-1 non-preemptive priority (i.c., =-1) is optimal for
0.13351< p., <0.68277 . and exhaustive (l.e.. Z=0) is optimal otherwise. Based on our earlier
intuition concerning switch-in times and priority service policies. this makes sense. It is optimal for the
server to switch upon every class-1 failure when the probability of experiencing a non-zero switch-in
time is minimal, but as this probability increases. it no longer becomes optimal to interrupt a class-2
service, eventually reaching the point where the server wishes to eliminate any unnecessary switches.
An important observation here is that the optimality of Z changes simultancously for both the mean
sojourn time and mean number of working machines. Therefore, with all else being equal, the choice of
7 that maximizes the number of working machines will also minimize the amount of time between a
machine’s failure and when it is up and working again.

We point out that there does not exist a perfectly linear relationship between E[S] and

E[Ny]=C - E|X|]-E[X]. Little’s Law [17] states that the expected number of customers present in a

system is equal to the expected amount of time a customer spends in system, multiplied by the average
arrival rate. For many models. said arrival rate is constant. and corresponds to one or more Poisson
processes that are independent of the rest of the system. Within this model. however. customers “arrive”™
as machines fail at a rate directly proportional to the number of working machines. In that way, the

166



Queueing Models and Service Management

average arrival rate satisfies & =aE[Ny]. leading to the relationship E[X|]+ E[X,]=&E[S]
= aE[Ny |E[S]. Seeing as how E[N; ] is not a constant in Figure 2, it is clear that there would not be
an exact linear relationship between it (being a linear function of E[X|]+ E[X5]) and E[S]. In fact, it
is casy to show that

C
1+aE[S]

E[Ny]=

which proves the claim that minimizing E[S] is equivalent to maximizing E[Nj ], at least when C
and « are constant.

We are able to make similar conclusions between the effect of switch-in times and priority service
policy optimality from Figure 3. by setting p., =1 and letting M, range between 0 and 2. Even with
a guaranteed positive switch-in time, class-1 preemptive priority is optimal for the smallest mean values.
This is followed by a small range where class-1 non-preemptive priority is optimal, followed by
exhaustive, which continues to be the best choice as My becomes large. In both Figures 2 and 3. we
remark at how fast class-1 preemptive priority switches from being the best choice to being the worst. as
the cost of the extra incurred switch-in times becomes too large. In these examples. class-1
non-preemptive priority at its worst is not too far from the class-2 priority models in Figure 2. but as the
mean switch-in times themselves are increasing in Figure 3. the total amount of idle time we are “risking™
is increasing and the higher rate of class-1 failures makes class-1 non-preemptive priority vastly
underperform the class-2 priority service policies at large values of M.

T T T 1 1 T
00 02 04 06 08 10

p =0 p -0
Figure 2(a) Figure 2(b)

Figure 2: Plots of E[S] and E[Nw] versus p-q (along with vertical lines indicating values of p.g
where the optimal choice of I changes), with C = 10, o = 0.075, Mg = 1, and H> service with
Mg=1.
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Figure 3: Plots of E[S] and E[ Ny | versus Mg, with C = 10, @ = 0.075, p-y = 1, and H> service
with Mp = 1.

We now expand our scope and consider « € {0.05,0.075,0.1}, Ce{2,3,....18}. p, {0,051},
and Erlang-3 ( F;) service time distributions with phase-type components

-3 3 0 | -3 3 0

=p£ =(0.,0.0), B=| 0 -3 3|, and = 0o -3 3|
B.= p,=(10.0). B B= o

0 0 -3 0o 0 3

Within the preemptive priority service policies, the F; model enables us to represent the possibility of
having a partially completed service to return to (since we allow preemptive resume). In comparison to
the H, service time distribution, the F, distribution will have smaller variance but equal mean at a
given value of M;.

Using the F; service time distributions, Figures 4 and 5 plot E[Ny] versus C for different
combinations of p.,, «. M, and M. Clearly, as we increase . E[N;] will converge to some
constant value. potentially depending on 7. This is a result of the existence of a tipping point where the
server’s rate of fixing machines balances out with the total failure rate of working machines. Any further
machines introduced into the system after this limit is reached will effectively increase the average
number of broken machines by 1.

When p., =0, the additional switches that a server experiences from a priority service policy do
not result in any idle time, and so each policy converges to the same value of E[N]; ], albeit at different
rates. When p., =0.5. we observe that each service policy now converges to a different value of
E[ Ny ]. This is due to the fact that different priority service policies introduce different amounts of extra
switch-ins, which result in different percentages of time that the server is idle. The higher percentage of
time that the server is idle, the smaller the net rate of fixing machines per unit time. As the probability of
a failure coming from class 1 is much higher than that of class 2, class-1 preemptive priority results in
the highest amount of extra switch-ins due to the long class-2 service times, followed by class-1
non-preemptive priority. The class-2 priority policies introduce similar amounts of extra switch-ins due
to a combination of the lower frequency of class-2 failures and the faster class-1 service times. At
po=1. this difference is further amplified and we see an increased amount of separation. A
consequence of this is that the exhaustive service policy always converges to the highest value of
E[Ny]| as € — oo, but as it does not necessarily do so at the fastest rate. other policies may yield a
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higher E[N, | at a particular value of C .

Comparing Figures 4(a)-(c) against Figures 4(d)-(f). we can see that since increasing « results in
a faster rate of occurrence for both failure classes. the spread of converged values of E[N;| for each
service policy is wider as the extra amount of idle time is increased. It is also notable to point out that
the higher rate of failure causes a reduction in all converged values, given that the server’s rate of repair
is unchanged. Moreover. the increased rate of failure results in a faster rate of convergence, as each
additional working machine contributes a larger amount to the total rate of failure.

We next compare Figures 4(a)-(c) against Figures 3(a)-(c) to ascertain the impact of increasing
M. Similar to increasing p.,. at positive values of p.,. we remark that this penalizes the priority
service policies proportional to their amount of extra incurred switch-ins. As the exhaustive service
policy has minimal incurred switch-ins. its converged E[N,] values are impacted the least.

Finally, observing Figures 4(a)-(c) and Figures 3(d)-(f). we note that the ratio of mean service
times between the two classes is affected. In Figures 5(d)-(f). we have M, =0.5. which halves the
mean class-2 service time while leaving the class-1 service time distribution unchanged. This increases
the rate at which the server repairs machines. and so the rates of convergence are slower to higher final
values. The quicker class-2 service times reduce the effectiveness of the class-1 priority policies (while
marginally improving the class-2 priority policies), so this narrows the differences in  E[ N, | between
the priority service policies and the exhaustive service policy.

Pop=0, =005

-8 8-
.-

o] ]
Figure 4(a) Figure Hd)

p-p=0.5, 0.=0.05 p-0=0.5, =01

T
10

] ]
Figure (k) Figura e

p.o=1. =005 p.o=1. =01

T
10

] ]
Figura <Hch Figure 4ify

Figure 4: Plots of E[Ny ] versus € under £3 service and fixed My = 1 and Mg = 1. for varying
P-o and o
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Figure 5: Plots of E[Nyw ] versus € under E3 service and fixed o = 0.05, for varying p..q, Ms,
and Mg.

If additional machines were cost-free, then a factory could achieve a maximum expected rate of
production by selecting an exhaustive service policy and increasing € to an arbitrarily large value.
However, in the real world. there are in fact restrictions on how many machines can be purchased, either
due to capital or space restrictions. Due to the existence of costs, the correct decision may be to use a
priority service policy at a value of ' that results in a higher value of E[N;] than the exhaustive
service policy. To approximate this, we introduce the objective function E[N, |—rC, where 7 is the
cost of possession for each machine in the system. This constant 7 can be interpreted as the cost per
unit time as a fraction of the profit per unit time that a single working machine produces. In this case,
the optimal choice of € and 7 will maximize our expected profit per unit time. Alternatively, *
may be treated as the tolerance that we select to determine if E[N)] has converged. such that the
objective function will be locally maximized for a given 7 at the highest value of C before every
additional machine added to the system results in an increase in E[N;] of less than » units. Global
maximization in this case tells us which service policy converges within the tolerance to the highest
value, the fastest.

In Tables 1 and 2, we find the optimal ' and 7 under the H, and F; service time
distributions, respectively, over the aforementioned ranges of M, M. «.and p.,. Additionally. we
consider values of the cost parameter r € {0.05,0.1,0.25} . Comparing these tables, it is clear that the
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smaller service time variance of the F; distributions causes the objective function to converge to
higher values, often at smaller values of . Here, a smaller service time variance reduces the
probability of the server being stuck on one job for an unusually long period of time, resulting in
machines being repaired at a more consistent rate. However., we do not observe a large impact on the
optimal choices of 7, outside of the case when M =0.5 and M =2, where the optimal C values
for the F; distributions are higher. Here, we see that exhaustive service is preferred over class-1
non-preemptive priority, which we would expect to observe at higher values of C'.

When p., =0, all service policies converge to the same value of E[N;] (all else being equal).
but the class-1 preemptive priority policy is universally preferred as it converges at the fastest rate. For
moderate values of p.;. either class-1 non-preemptive priority or exhaustive service is optimal. largely
conditional on 7. M. and M;. For larger r . the cost per machine is higher, so that the objective
function will maximize at a lower value of €. As the exhaustive service policy is best for large C', but
not necessarily small . it is possible for the optimal € to end up in the range where class-1
non-preemptive priority results in a higher value of E[N;|. Reducing the mean class-2 service time, as
observed in Figures 4 and 5. causes the objective function to maximize at higher values of . to a
larger expected profit per unit time. For moderate values of p.;, this may result in exhaustive service
being preferred over class-1 non-preemptive priority. Finally, as My increases, the additional switch-in
times that the non-preemptive priority service policy causes reduces the region where 7 =-1
outperforms 7 =0 to potentially no values of (', so that exhaustive service becomes the best choice.
Not surprisingly. exhaustive service performs the best over these ranges when p., =1.

To close this section, we end with some remarks concerning the computations required to obtain
the data used in this section. For Tables 1 and 2. we used the programming language R for all of our
computations, and then analyzed our data in Excel. As we have made no approximations in any part of
our analysis, the accuracy of our data is limited solely by the intrinsic functions built into R. For each
combination of M;, Ms. a. and p.,. with either H, or F; service, the mean queue lengths for
both classes were calculated from the steady-state probabilities for all Ce{2.3.....18} and
T e{-2,—1.0,1,2}, so that within Excel we were free to vary our cost parameter / and immediately
obtain the corresponding optimal ¢ and Z for each case. Even if the total state space is large for a
given C, since the QBD algorithm for deriving the steady-state probabilities outlined in Section 2 only
involves operations on the smaller 05" blocks (i.c., not on the entire (') matrix), it is possible to

calculate E|Ny ] for a given € and 7 from these ranges in under a second using a 4.00 GHz
17-6700K processor.

To obtain mean sojourn times, we applied the formula for the first moment of a phase-type
distribution. For example, to obtain the expected sojourn time of a class-1 customer when
7 e{-2,-1,0}, we computed

(D, (Gt + o5 ANB)T .
However, inverting the phase-type rate matrices proved computationally intense for large C'. even
when making use of the block upper-diagonal structure of each 7 during the inversion process. For
instance. to compute the mean sojourn time for both classes for a given C (i.e.. the total time to
calculate the mean sojourn times for each 7 € {-2,-1,0.1.2} ) when M, =1, My=1. «=0.075. and

2-0=0.5 under H, (F3) service, the calculations take under a second for C'=35, approximately 11
(22) seconds for ' =11, and approximately 340 (950) seconds for C' =18.

While we are unable to avoid these (potentially lengthy) matrix inversions and multiplications
when calculating higher moments or distributional values for the sojourn times, we can make use of
Little’s Law when calculating their first moments. Specifically. after calculating the mean queue lengths
E[X,] and E[X,] <(and hence the expected number of working machines,
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E[Ny|=C-E|X,|-E[X;]). it immediately follows that the expected sojourn time for a machine

suffering a class-1 failure 1s simply
E[X]

4E[Ny |
and the expected sojourn time for an arbitrary failed machine is
E[d]+ E[X5]
«B[Ny|
As we only require the steady-state probabilities to calculate the above quantities, in contrast to applying
phase-type formulas, Little’s Law only takes approximately 2 seconds or less to calculate the exact same
values for the mean sojourn times of both classes for a given € (up to 18) when M, =1, M;=1,

a=0075,and p., =05 under H, or F, service. Therefore, it is advisable to make use of Little’s
Law when calculating the first moment.

Table 1. Optimal combinations of ¢ and 7 under H; service.

P=n
r=0.05 0 0.5 1
Mg Ms @ C T ENy] C I ENyl € T ENw]
1 1 005 15 1 68352 18 0 64476 18 0 63070
0075 11 1 45423 15 0 43593 15 0 42557
0.10 9 1 34025 12 0 32409 12 0 3.1517
2 005 15 1 68352 18 0 62003 18 0 6.0387
0.075 11 1 45423 16 0 42961 17 0 4.1733
0.10 9 1 34025 12 0 3.1421 13 0 3.0430
0.5 1 005 18 1 102860 18 0 92835 18 0 9.0040
0.075 15 1 69608 18 0 66601 18 0 64709
0.10 12 1 52079 16 0 50348 17 0 4.9405
2 005 18 1 102860 18 0 89543 18 0 84692
0.075 15 1 69608 18 0 64526 18 0 6.1226
0.10 12 1 52079 17 0 49323 18 0 47578
r=0.1
1 1 005 3 1 66948 15 -1 62379 17 0 6.2189
0.075 10 1 44827 11 -1 41039 12 0 4.0405
0.10 1 33439 9 -1 30572 9 0 29313
2 005 13 1 66948 17 0 62002 17 0 59419
0.075 10 1 44827 12 0 4.0240 12 0 3.8182
0.10 8 1 33439 9 0 29156 9 0 27410
0.5 1 005 18 1 102860 18 0 92835 18 0 9.0040
0075 13 1 68193 16 0 64965 16 0 6.2871
0.10 11 1 51484 13 0 48391 13 0 46614
2 005 18 1 102860 18 0 89543 18 0 84692
0.075 13 1 68193 17 0 63640 18 0 6.1226
0.10 11 1 51484 13 0 46380 14 0 4.4440
r=0.25
1 1 005 10 1 61367 11 -1 55854 10 0 5.0791
0075 7 1 39922 7 -1 34423 7 0 32798
0.10 6 1 30645 5 -1 24134 5 0 22979
2 005 10 1 61367 10 -1 51427 10 0 4.8054
0075 7 1 39922 7 -1 33006 6 0 2.8259
0.10 6 1 30645 5 -1 23031 4 0 1.8741
0.5 1 005 15 1 97449 15 -1 86819 16 0 8.5677
0.075 11 1 64953 10 -1 54877 10 0 52170
0.10 8 1 46639 8 -1 40735 8 0 3.8568
2 005 15 1 97449 16 0 85116 16 0 8.0301
0075 11 1 64953 10 -1 51787 10 0 4.8051
0.10 8 1 46639 7 -1 35766 7 0 3.2658
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Table 2. Optimal combinations of ¢ and 7 under E; service.

P=0
r=0.05 0.5
.‘rfﬂ )‘f_\‘

1 1

—

N

ENy] €
6.6507 18
43870 14
3.2938 11
6.4986 18
43204 16
3.1941 13
9.8396 18
67514 18
50391 15
9.4846 18
6.6718 18
49859 17

N

10.4744
6.9922
5.2021

oo e e Y e [ e [ s s s s s e Y
oo e e Y e [ e [ s s s s s e Y

6.7993
4.5144
3.3179
6.7993
4.5144
3.3179
10.3849
6.9260
5.2021
10.3849
6.9260
5.2021

6.2868 15
40746 11
3.0924 9
6.3466 16
4.0958 12
3.0464 9
9.8396 18
6.5952 15
4.88060 12
9.4846 18
64505 17
47729 14

cocooccococoocoo L L
coooCcocooooCOC

6.6494 57733 10
4.3540 36871 7
3.0849 25601 5
6.6494 54871 10
4.3540 34972 7
3.0849 24237 5
10.2076 9.0266 15
6.7681 59058 11
5.0649 43761 8
10.2076 9.0887 16
6.7681 58022 11
5.0649 4.0903 8

Lo ek s s s Y e Y e Y e Y s s s e

6. Concluding Remarks

We have examined a closed queueing maintenance model with two classes of machine failures
which are repaired by a single server in a manner determined by a particular service policy. Exhaustive
service as well as both non-preemptive and preemptive resume service policies were considered.
Through the use of matrix analytic methods. the steady-state joint queue length distribution, as well as
the distribution of the time between a target machine’s failure and repair completion, have been found
and expressed in phase-type form. We have also conducted a numerical analysis to mvestigate the
influence of several model components on the expected number of working machines. and how these
components affect the optimal choice of service policy when our goal is to maximize this expected
number while incurring a cost per machine possessed in the system.

In future work. we anticipate extending this model by generalizing to hybrid priority policies,
which will allow the server’s decision to move to depend on the queue lengths of both classes. We also
intend to introduce the idea of a maintenance float of spare machines into the model. by way of placing
a cap on the number of machines that can work (and hence be at risk of failure). which may be less than
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the total number of machines in the system. Another interesting problem to investigate is the optimal
manner of assigning different sized failures into “small” or “large™ classes when the working machines
are in fact susceptible to more than two distinct types of failure.

Another direction for a future extension of this model is to expand beyond the current two-level
priority system to three or more priority levels. If we further divide the job types into more
homogeneous classifications in terms of service distribution, we would expect to observe further gains
in system optimization. dependent on the switch-in time distributions. For instance. if switch-in times
were negligible. then a preemptive resume priority discipline assigning higher priority to classes with
shorter expected repair times would bring us closer to the shortest-job-first service discipline, which is
known to be optimal. However. under our current approach. the addition of another class of machine
failures would necessitate an increase in the dimensionality of our model by one or two variables
(depending on the service policy) when specifying the modified sub-matrices, which would
correspondingly increase computation time and memory requirements for a system having the same
total number of machines. Therefore, it would be advantageous to investigate the use of other priority
queueing techniques that can reduce the effective state space for calculations.
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